Affect of age, intercourse, physique structure, and the COVID-19 pandemic on the bodily health of 38,084 German main college youngsters


  • Ortega, F. B., Ruiz, J. R., Castillo, M. J. & Sjöström, M. Physical fitness in childhood and adolescence: a powerful marker of health. Int. J. Obes. (Lond). 32, 1–11. https://doi.org/10.1038/sj.ijo.0803774 (2008).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Caspersen, C. J., Powell, K. E. & Christenson, G. M. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public. Health Rep. 100, 126–131 (1985).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ross, R. et al. Importance of assessing cardiorespiratory fitness in clinical practice: A case for fitness as a clinical vital sign: A scientific statement from the American heart association. Circulation 134, e653–e699. https://doi.org/10.1161/cir.0000000000000461 (2016).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Tsiros, M. D. et al. Health-related quality of life in obese children and adolescents. Int. J. Obes. (Lond). 33, 387–400. https://doi.org/10.1038/ijo.2009.42 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blüher, M. Obesity: global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 15, 288–298. https://doi.org/10.1038/s41574-019-0176-8 (2019).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Llewellyn, A., Simmonds, M., Owen, C. G. & Woolacott, N. Childhood obesity as a predictor of morbidity in adulthood: a systematic review and meta-analysis. Obes. Rev. 17, 56–67. https://doi.org/10.1111/obr.12316 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simmonds, M. et al. The use of measures of obesity in childhood for predicting obesity and the development of obesity-related diseases in adulthood: a systematic review and meta-analysis. Health Technol. Assess. 19, 1–336. https://doi.org/10.3310/hta19430 (2015).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Singh, A. S., Mulder, C., Twisk, J. W., van Mechelen, W. & Chinapaw, M. J. Tracking of childhood overweight into adulthood: a systematic review of the literature. Obes. Rev. 9, 474–488. https://doi.org/10.1111/j.1467-789X.2008.00475.x (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • García-Hermoso, A., Izquierdo, M. & Ramírez-Vélez, R. Tracking of physical fitness levels from childhood and adolescence to adulthood: a systematic review and meta-analysis. Transl Pediatr. 11, 474–486. https://doi.org/10.21037/tp-21-507 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • García-Hermoso, A., Ramírez-Campillo, R. & Izquierdo, M. Is muscular fitness associated with future health benefits in children and adolescents?? A systematic review and Meta-Analysis of longitudinal studies. Sports Med. 49, 1079–1094. https://doi.org/10.1007/s40279-019-01098-6 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • García-Hermoso, A., Ramírez-Vélez, R., García-Alonso, Y., Alonso-Martínez, A. M. & Izquierdo, M. Association of cardiorespiratory fitness levels during youth with health risk later in life: A systematic review and Meta-analysis. JAMA Pediatr. 174, 952–960. https://doi.org/10.1001/jamapediatrics.2020.2400 (2020).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Janssen, I. & LeBlanc, A. G. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int. J. Behav. Nutr. Phys. Activity. 7, 40. https://doi.org/10.1186/1479-5868-7-40 (2010).

    Article 
    MATH 

    Google Scholar
     

  • Guthold, R., Stevens, G. A., Riley, L. M. & Bull, F. C. Global trends in insufficient physical activity among adolescents: a pooled analysis of 298 population-based surveys with 1·6 million participants. Lancet Child. Adolesc. Health. 4, 23–35. https://doi.org/10.1016/S2352-4642(19)30323-2 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hallal, P. C. et al. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet 380, 247–257. https://doi.org/10.1016/S0140-6736(12)60646-1 (2012).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Kalman, M. et al. Secular trends in moderate-to-vigorous physical activity in 32 countries from 2002 to 2010: a cross-national perspective. Eur. J. Pub. Health. 25, 37–40. https://doi.org/10.1093/eurpub/ckv024 (2015).

    Article 

    Google Scholar
     

  • Bull, F. C. et al. World health organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 54, 1451. https://doi.org/10.1136/bjsports-2020-102955 (2020).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Krause, L., Anding, C. & Kamtsiuris, P. Vol. 59 (Robert Koch-Institut, Epidemiologie und Gesundheitsberichterstattung, (2016).

  • Fühner, T., Kliegl, R., Arntz, F., Kriemler, S. & Granacher, U. An update on secular trends in physical fitness of children and adolescents from 1972 to 2015: A systematic review. Sports Med. 51, 303–320. https://doi.org/10.1007/s40279-020-01373-x (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Ng, M. et al. Global, regional, and National prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the global burden of disease study 2013. Lancet 384, 766–781. https://doi.org/10.1016/s0140-6736(14)60460-8 (2014).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Tomkinson, G. R., Lang, J. J. & Tremblay, M. S. Temporal trends in the cardiorespiratory fitness of children and adolescents representing 19 high-income and upper middle-income countries between 1981 and 2014. Br. J. Sports Med. 53, 478–486. https://doi.org/10.1136/bjsports-2017-097982 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Brettschneider, A. K. et al. Updated prevalence rates of overweight and obesity in 11- to 17-year-old adolescents in Germany. Results from the telephone-based KiGGS wave 1 after correction for bias in self-reports. BMC Public. Health. 15, 1101. https://doi.org/10.1186/s12889-015-2467-x (2015).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Brettschneider, A. K., Schienkiewitz, A., Schmidt, S., Ellert, U. & Kurth, B. M. Updated prevalence rates of overweight and obesity in 4- to 10-year-old children in Germany. Results from the telephone-based KiGGS wave 1 after correction for bias in parental reports. Eur. J. Pediatr. 176, 547–551. https://doi.org/10.1007/s00431-017-2861-8 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Schienkiewitz, A., Brettschneider, A. K., Damerow, S. & Rosario, A. S. Overweight and obesity among children and adolescents in Germany. Results of the cross-sectional KiGGS wave 2 study and trends. J. Health Monit. 3, 15–22. https://doi.org/10.17886/rki-gbe-2018-022.2 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martinko, A., Sorić, M., Jurak, G. & Starc, G. Physical fitness among children with diverse weight status during and after the COVID-19 pandemic: a population-wide, cohort study based on the Slovenian physical fitness surveillance system (SLOfit). Lancet Reg. Health Eur. 34, 100748. https://doi.org/10.1016/j.lanepe.2023.100748 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rúa-Alonso, M. et al. Comparison of physical fitness profiles obtained before and during COVID-19 pandemic in two independent large samples of children and adolescents: DAFIS project. Int. J. Environ. Res. Public Health. 19, 3963 (2022).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Piesch, L. et al. Effect of COVID-19 pandemic lockdowns on body mass index of primary school children from different socioeconomic backgrounds. Sports Med. – Open. 10, 20. https://doi.org/10.1186/s40798-024-00687-8 (2024).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Basterfield, L. et al. Changes in children’s physical fitness, BMI and health-related quality of life after the first 2020 COVID-19 lockdown in England: A longitudinal study. J. Sports Sci. 40, 1088–1096. https://doi.org/10.1080/02640414.2022.2047504 (2022).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Jarnig, G. et al. Acceleration in BMI gain following COVID-19 restrictions. A longitudinal study with 7- to 10-year-old primary school children. Pediatr. Obes. 17, e12890. https://doi.org/10.1111/ijpo.12890 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drenowatz, C., Ferrari, G., Greier, K., Chen, S. & Hinterkörner, F. Physical fitness in Austrian elementary school children prior to and post-COVID-19. AIMS Public. Health. 10, 480–495. https://doi.org/10.3934/publichealth.2023034 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wessely, S. et al. Changes in motor performance and BMI of primary school children over Time-Influence of the COVID-19 confinement and social burden. Int. J. Environ. Res. Public. Health. https://doi.org/10.3390/ijerph19084565 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • V Pajek, S. Impact of the COVID-19 pandemic on the motor development of schoolchildren in rural and urban environments. Biomed. Res. Int. 2022, 8937693. https://doi.org/10.1155/2022/8937693 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chambonnière, C. et al. Adverse collateral effects of COVID-19 public health restrictions on physical fitness and cognitive performance in primary school children. Int. J. Environ. Res. Public. Health. 18 https://doi.org/10.3390/ijerph182111099 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eberhardt, T., Bös, K. & Niessner, C. Changes in physical fitness during the COVID-19 pandemic in German children. Int. J. Environ. Res. Public. Health. https://doi.org/10.3390/ijerph19159504 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Jarnig, G., Kerbl, R. & van Poppel, M. N. M. The impact of COVID-19-Related mitigation measures on the health and fitness status of primary school children in Austria: A longitudinal study with data from 708 children measured before and during the ongoing COVID-19 pandemic. Sports (Basel). https://doi.org/10.3390/sports10030043 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Stojan, R. et al. Motor performance in children before, during and after COVID-19 pandemic and the role of socioeconomic background: A 10-year cohort study of 68,996 third grade children. (2023). https://doi.org/10.31219/osf.io/6qxrm

  • Teich, P. et al. Covid pandemic effects on the physical fitness of primary school children: results of the German EMOTIKON project. Sports Med. – Open. 9, 77. https://doi.org/10.1186/s40798-023-00624-1 (2023).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Jurak, G. et al. A COVID-19 crisis in child physical fitness: creating a barometric tool of public health engagement for the Republic of Slovenia. Front. Public. Health. https://doi.org/10.3389/fpubh.2021.644235 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Teich, P. et al. Association of school social status with Covid pandemic related changes and post-pandemic rebounds of children’s physical fitness. (2024). https://doi.org/10.21203/rs.3.rs-4997009/v1

  • Chen, G., Chen, J., Liu, J., Hu, Y. & Liu, Y. Relationship between body mass index and physical fitness of children and adolescents in Xinjiang, China: a cross-sectional study. BMC Public. Health. 22, 1680. https://doi.org/10.1186/s12889-022-14089-6 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Drenowatz, C., Hinterkörner, F. & Greier, K. Physical fitness and motor competence in upper Austrian elementary school Children-Study protocol and preliminary findings of a State-Wide fitness testing program. Front. Sports Act. Living. 3, 635478. https://doi.org/10.3389/fspor.2021.635478 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, Y. C. & Malina, R. M. Body mass index and individual physical fitness tests in Taiwanese youth aged 9–18 years. Int. J. Pediatr. Obes. 5, 404–411. https://doi.org/10.3109/17477160903497902 (2010).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Kwieciński, J. et al. Non-linear relationships between the BMI and physical fitness in Polish adolescents. Ann. Hum. Biol. 45, 406–413. https://doi.org/10.1080/03014460.2018.1494306 (2018).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Lopes, V. P. et al. Linear and nonlinear relationships between body mass index and physical fitness in Brazilian children and adolescents. Am. J. Hum. Biol. https://doi.org/10.1002/ajhb.23035 (2017).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Lopes, V. P., Malina, R. M., Maia, J. A. R. & Rodrigues, L. P. Body mass index and motor coordination: Non-linear relationships in children 6–10 years. Child. Care Health Dev. 44, 443–451. https://doi.org/10.1111/cch.12557 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qin, G., Qin, Y. & Liu, B. Association between BMI and health-related physical fitness: A cross-sectional study in Chinese high school students. Front. Public. Health. https://doi.org/10.3389/fpubh.2022.1047501 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Bellizzi, M. C. & Dietz, W. H. Workshop on childhood obesity: summary of the discussion. Am. J. Clin. Nutr. 70, 173s–175s. https://doi.org/10.1093/ajcn/70.1.173s (1999).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Agbaje, A. O. Waist-circumference-to-height-ratio had better longitudinal agreement with DEXA-measured fat mass than BMI in 7237 children. Pediatr. Res. 96, 1369–1380. https://doi.org/10.1038/s41390-024-03112-8 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alves Junior, C. A. S., Mocellin, M. C., Gonçalves, E. C. A., Silva, D. A. S. & Trindade, E. B. S. M. Anthropometric indicators as body fat discriminators in children and adolescents: A systematic review and Meta-Analysis. Adv. Nutr. 8, 718–727. https://doi.org/10.3945/an.117.015446 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin-Calvo, N., Moreno-Galarraga, L. & Martinez-Gonzalez, M. A. Association between body mass index, Waist-to-Height ratio and adiposity in children: A systematic review and Meta-Analysis. Nutrients 8, 512 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCarthy, H. D. & Ashwell, M. A study of central fatness using waist-to-height ratios in UK children and adolescents over two decades supports the simple message – ‘keep your waist circumference to less than half your height’. Int. J. Obes. 30, 988–992. https://doi.org/10.1038/sj.ijo.0803226 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Brault, M. C., Turcotte, O., Aimé, A., Côté, M. & Bégin, C. Body mass index accuracy in preadolescents: can we trust Self-Report or should we seek parent report?? J. Pediatr. 167, 366–371. https://doi.org/10.1016/j.jpeds.2015.04.043 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Brettschneider, A. K., Ellert, U. & Schaffrath Rosario, A. Comparison of BMI derived from parent-reported height and weight with measured values: results from the German KiGGS study. Int. J. Environ. Res. Public. Health. 9, 632–647. https://doi.org/10.3390/ijerph9020632 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goodman, E., Hinden, B. R. & Khandelwal, S. Accuracy of teen and parental reports of obesity and body mass index. Pediatrics 106, 52–58. https://doi.org/10.1542/peds.106.1.52 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fühner, T., Granacher, U., Golle, K. & Kliegl, R. Age and sex effects in physical fitness components of 108,295 third graders including 515 primary schools and 9 cohorts. Sci. Rep. 11, 17566. https://doi.org/10.1038/s41598-021-97000-4 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cole, T. J. The LMS method for constructing normalized growth standards. Eur. J. Clin. Nutr. 44, 45–60 (1990).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Cole, T. J. & Green, P. J. Smoothing reference centile curves: the LMS method and penalized likelihood. Stat. Med. 11, 1305–1319. https://doi.org/10.1002/sim.4780111005 (1992).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Flegal, K. M. & Cole, T. J. Construction of LMS parameters for the centers for disease control and prevention 2000 growth charts. Natl. Health Stat. Rep., 1–3 (2013).

  • World Medical Association. World medical association declaration of Helsinki: ethical principles for medical research involving human subjects. Jama 310, 2191–2194. https://doi.org/10.1001/jama.2013.281053 (2013).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Fühner, T., Granacher, U., Golle, K. & Kliegl, R. Effect of timing of school enrollment on physical fitness in third graders. Sci. Rep. 12, 7801. https://doi.org/10.1038/s41598-022-11710-x (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Teich, P., Fühner, T., Granacher, U. & Kliegl, R. Physical fitness of primary school children differs depending on their timing of school enrollment. Sci. Rep. 13, 8788. https://doi.org/10.1038/s41598-023-35727-y (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bös, K. et al. Deutscher Motorik Test 6–18 (DTM) 1st edn, Vol. 186 (Czwalina, 2009).

    MATH 

    Google Scholar
     

  • von Haaren, B., Härtel, S., Seidel, I., Schlenker, L. & Bös, K. Validity of a 6-min endurance run and a 20-m shuttle run in 9- to 11-year old children [Die Validität des 6-Minuten-Laufs und 20m Shuttle Runs bei 9- bis 11-jährigen Kindern]. Dtsch. Z. Für Sportmedizin. 62, 351–355 (2011).


    Google Scholar
     

  • Schulz, S. The reliability of the star coordination run and the 1-kg medicine ball push-physical fitness tests used in the EMOTIKON-study. Univ. Potsdam (2013).

  • Fernandez-Santos, J. R., Ruiz, J. R., Cohen, D. D., Gonzalez-Montesinos, J. L. & Castro-Piñero, J. Reliability and validity of tests to assess Lower-Body muscular power in children. J. Strength. Cond Res. 29, 2277–2285. https://doi.org/10.1519/jsc.0000000000000864 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Schulz, S. Die reliabilität des sternlaufs und des medizinballstoßes Im EMOTIKON-Test [The reliability of the star-coordination-run test and the 1-kg medicine ball-push test: Physical fitness tests used in the EMOTIKON study]. Univ. Potsdam. 2, 2277–2285 (2013).

    MATH 

    Google Scholar
     

  • Bormann, A. Wissenschaftliche Analyse im Rahmen der Implementierung des Einbeinstandtests in der Primarstufe im Land Branden–burg (EMOTIKON–Studie). Überprüfung der Reliabilität und Normwertbildung [Scientific analysis as part of the implementation of the one–legged–stance test in primary school in the Federal State of Brandenburg, Germany (EMOTIKON study). Reliability and normative values]. Überprüfung der Reliabilität und Normwertbildung [Scientific analysis as part of the implementation of the one-legged-stance test in primary school in the Federal State of Brandenburg, Germany (EMOTIKON study). Reliability and normative values].(University of Potsdam, 2016) (2016).

  • Box, G. E. P. & Cox, D. R. An analysis of transformations. J. Roy. Stat. Soc.: Ser. B (Methodol.). 26, 211–243. https://doi.org/10.1111/j.2517-6161.1964.tb00553.x (1964).

    Article 
    MATH 

    Google Scholar
     

  • Vogel, M. Data and Methods Around Reference Values in Pediatrics. R package version 0.8.0. (2022).

  • Hölling, H. et al. Die KiGGS-Studie: bundesweit repräsentative Längs- und querschnittstudie Zur gesundheit von kindern und Jugendlichen Im Rahmen des gesundheitsmonitorings am Robert Koch-Institut. Bundesgesundheitsblatt – Gesundheitsforschung – Gesundheitsschutz. https://doi.org/10.1007/s00103-012-1486-3 (2012).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Lee, D. S. & Lemieux, T. Regression discontinuity designs in economics. J. Econ. Lit. 48, 281–355 (2010).

    MATH 

    Google Scholar
     

  • Thistlewaite, D. L. & Campbell, D. T. Regression-discontinuity analysis: an alternative to the ex-post facto experiment. Observational Stud. 3, 119–128 (2017).

    MATH 

    Google Scholar
     

  • Bates, D., Kliegl, R., Vasishth, S. & Baayen, H. Parsimonious mixed models. arXiv preprint arXiv:1506.04967 (2015).

  • Matuschek, H. & Kliegl, R. On the ambiguity of interaction and nonlinear main effects in a regime of dependent covariates. Behav. Res. Methods. 50, 1882–1894 (2018).

    PubMed 
    MATH 

    Google Scholar
     

  • Kliegl, R., Wei, P., Dambacher, M., Yan, M. & Zhou, X. Experimental effects and individual differences in linear mixed models: estimating the relationship between Spatial, object, and attraction effects in visual attention. Front. Psychol. https://doi.org/10.3389/fpsyg.2010.00238 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Douglas Bates, P. A., Kleinschmidt, D., Calderón, J. B. S., Zhan, L., Noack, A., Bouchet-Valat, M., Arslan, A., Kelman, T., Baldassari, A., Ehinger, B., Karrasch, D., Saba, E., Quinn, J., Hatherly, M., Piibeleht, M., Mogensen, P. K., Babayan, S., Holy, T., Nazarathy, Y. JuliaStats/MixedModels.jl v4.26.1. https://doi.org/10.5281/zenodo.13864525 (2011).

  • Alday, P. palday/MixedModelsExtras.jl: v2.1.1. (2024). https://doi.org/10.5281/zenodo.10569543

  • Alday, P. & Bates, D. palday/MixedModelsMakie.jl: v0.3.24. (2023). https://doi.org/10.5281/zenodo.8125544

  • Bezanson, J., Edelman, A., Karpinski, S., Shah, V. B. & Julia A fresh approach to numerical computing. SIAM Rev. 59, 65–98. https://doi.org/10.1137/141000671 (2017).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Wickham, H. et al. Welcome to the tidyverse. J. Open. Source Softw. 4, 1686 (2019).

    ADS 
    MATH 

    Google Scholar
     

  • Lüdecke, D. et al. easystats: Framework for Easy Statistical Modeling, Visualization, and Reporting. CRAN (2022).

  • R Core Team. R: A Language and Environment for Statistical Computing. (2023).

  • RStudio Team. RStudio: Integrated Development Environment for R. (2023).

  • Rodgers, J. L. & Shrout, P. E. Psychology’s replication crisis as scientific opportunity: A précis for policymakers. Policy Insights Behav. Brain Sci. 5, 134–141. https://doi.org/10.1177/2372732217749254 (2018).

    Article 

    Google Scholar
     

  • Beunen, G. & Thomis, M. Muscular strength development in children and adolescents. Pediatr. Exerc. Sci. 12, 174–197. https://doi.org/10.1123/pes.12.2.174 (2000).

    Article 

    Google Scholar
     

  • Golle, K., Muehlbauer, T., Wick, D. & Granacher, U. Physical fitness percentiles of German children aged 9–12 years: findings from a longitudinal study. PLoS One. 10, e0142393. https://doi.org/10.1371/journal.pone.0142393 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kirchengast, S. Gender differences in body composition from childhood to old age: an evolutionary point of view. J. Life Sci. 2, 1–10. https://doi.org/10.1080/09751270.2010.11885146 (2010).

    Article 

    Google Scholar
     

  • Wells, J. C. Sexual dimorphism of body composition. Best Pract. Res. Clin. Endocrinol. Metab. 21, 415–430. https://doi.org/10.1016/j.beem.2007.04.007 (2007).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Wells, J. C. K. & Fewtrell, M. S. Measuring body composition. Arch. Dis. Child. 91, 612–617. https://doi.org/10.1136/adc.2005.085522 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nevill, A., Tsiotra, G., Tsimeas, P. & Koutedakis, Y. Allometric associations between body size, shape, and physical performance of Greek children. Pediatr. Exerc. Sci. 21, 220–232. https://doi.org/10.1123/pes.21.2.220 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Bustamante Valdivia, A., Maia, J. & Nevill, A. Identifying the ideal body size and shape characteristics associated with children’s physical performance tests in Peru. Scand. J. Med. Sci. Sports. 25, e155–165. https://doi.org/10.1111/sms.12231 (2015).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lovecchio, N., Giuriato, M., Zago, M. & Nevill, A. Identifying the optimal body shape and composition associated with strength outcomes in children and adolescent according to place of residence: an allometric approach. J. Sports Sci. 37, 1434–1441. https://doi.org/10.1080/02640414.2018.1562615 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Silva, S. et al. An allometric modelling approach to identify the optimal body shape associated with, and differences between Brazilian and Peruvian youth motor performance. PLoS One. 11, e0149493. https://doi.org/10.1371/journal.pone.0149493 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, Y. C. & Malina, R. M. BMI and Health-Related physical fitness in Taiwanese youth 9–18 years. Med. Sci. Sports Exerc. 39, 701. https://doi.org/10.1249/mss.0b013e31802f0512 (2007).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Fiori, F. et al. Relationship between body mass index and physical fitness in Italian prepubertal schoolchildren. PLoS One. 15, e0233362. https://doi.org/10.1371/journal.pone.0233362 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Rittsteiger, L. et al. Sports participation of children and adolescents in Germany: disentangling the influence of parental socioeconomic status. BMC Public. Health. 21, 1446. https://doi.org/10.1186/s12889-021-11284-9 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Drenowatz, C. et al. Organized sports, overweight, and physical fitness in primary school children in Germany. J. Obes. 2013, 935245. https://doi.org/10.1155/2013/935245 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bermejo-Cantarero, A. et al. Relationship between both cardiorespiratory and muscular fitness and health-related quality of life in children and adolescents: a systematic review and meta-analysis of observational studies. Health Qual. Life Outcomes. 19, 127. https://doi.org/10.1186/s12955-021-01766-0 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meijer, A. et al. Cardiovascular fitness and executive functioning in primary school-aged children. Dev. Sci. 24, e13019. https://doi.org/10.1111/desc.13019 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Brady, A. C., Griffin, M. M., Lewis, A. R., Fong, C. J. & Robinson, D. H. How scientific is educational psychology research?? The increasing trend of squeezing causality and recommendations from Non-intervention studies. Educational Psychol. Rev. 35, 37. https://doi.org/10.1007/s10648-023-09759-9 (2023).

    Article 
    MATH 

    Google Scholar
     

  • Grosz, M. P. Should researchers make causal inferences and recommendations for practice on the basis of nonexperimental studies? Educational Psychol. Rev. 35, 57. https://doi.org/10.1007/s10648-023-09777-7 (2023).

    Article 
    MATH 

    Google Scholar
     

  • Worthington, R. L. & Whittaker, T. A. Scale development research:a content analysis and recommendations for best practices. Couns. Psychol. 34, 806–838. https://doi.org/10.1177/0011000006288127 (2006).

    Article 
    MATH 

    Google Scholar
     

  • Zaqout, M. et al. Determinant factors of physical fitness in European children. Int. J. Public. Health. 61, 573–582. https://doi.org/10.1007/s00038-016-0811-2 (2016).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Peterson, M. D., Saltarelli, W. A., Visich, P. S. & Gordon, P. M. Strength capacity and cardiometabolic risk clustering in adolescents. Pediatrics 133, e896–903. https://doi.org/10.1542/peds.2013-3169 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wöhrl, T., Teich, P., Bähr, F. & Kliegl, R. Assessing bias of parental report of children’s body mass and body height with measures of physical fitness. Technical Report: German Kids Fitness Lab, University of Erfurt. (2023).

  • Kliegl, R., Teich, P., Wöhrl, T., Bähr, F. & Golle, K. Assessing bias of parental report of children’s body mass and body height with measures of physical fitness. Technical Report: German Kids Fitness Lab, University of Erfurt. (2023).

  • Eberhardt, T., Bös, K. & Niessner, C. The fitness barometer: A best practice example for monitoring motor performance with pooled data collected from practitioners. Front. Public. Health. 9 https://doi.org/10.3389/fpubh.2021.720589 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kaminsky, L. A. et al. Cardiorespiratory fitness and cardiovascular disease – The past, present, and future. Prog Cardiovasc. Dis. 62, 86–93. https://doi.org/10.1016/j.pcad.2019.01.002 (2019).

    Article 
    PubMed 
    MATH 

    Google Scholar
     



  • Source link

    Leave a comment

    Shopping cart

    ×